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Via the de Broglie—Bohm causal interpretation of quantum mechanics, we develop a protocol to obtain a
propagator for the guiding wave function where the features of the quantum potential are kept. Our analysis is
extended to include a friction mechanisf81063-651X97)09507-X]
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In the causal interpretation of quantum mechanics, the dx % 9S
primary concept is introduced that a particle has a definite a:U(Xat”x:x(t):E I
path which is determined by a suitable equation of motion
ar;d ethfatné?:)sn[platrg] |S:A\£lérc1)(:§r:elntatlrl]>é if;iﬁ:gt.g%’ se?uéde'ggsubject to an arbitrary external potentialand the so-called
wave functl o INgly, : W guantum potentiaV/, [1-5].

the particle and wave properties can be obtained by writing With the help of Eq(7). we can readily obtain
the guiding wave function in the polar form P aLo, y

: )

X=X(t)

. S [ h\[dS\? 1
=¢ expiS), 1 o ) = - —=0.
¥=¢ expliS) @ =+ Zm) ax) + 2 (V+Vq)=0 (8
where
From Egs.(7) and(8), we can also obtain
J J
a_f (5;):0’ @ dx_ 17 V4V 9
a2 " max qu 9
dv dv 10
- = where
ot o X m dx (VHVa), ©
d _ J J 10
and at EJFU Ix (10
_ 42
p=¢% “) is the hydrodynamical derivative.

Equation(9) has the form of Newton's second law, in

= ﬁ 0"_5, (5) which the particle is subject to a quantum potentig), in
m dx addition to the classical potentiM. The classical set of
paths is obtained by considering the case when the amplitude
_ ) of the wave function is a slowly varying function of position,
Vo=~ mas o © e, V0.

In what follows, we develop a protocol to obtain a propa-

Equation (2) represents the conservation of probability gator for a wave function by retaining explicitly some of the
with densityp, whereas Eq(3) describes paths of a particle features of the quantum potential. Therefore, this procedure
with velocity attempts to generalize that developed by Feynman and Hibbs
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[6], since the procedure of Feynman and Hibbs is viewed as X(0)=xo, X(0)=vy,
a method for obtaining the quantum wave function from the
set of classical paths, for whic,,=0. a(0)=a,, a(0)=0

We investigate the quantum hydrodynamical evolution of
the wave packet

mUOXO
¢(x,t)=[27ra2(t)]_1/4exp[ - W“ (11

Now the wave packet described by Edj) can be written
where X(t) represents the classical path. To this end, weas
expandS(x,t), V(x,t), andVy(x,t) aroundX(t) up to sec-

ond order: - ima(t) 1
P(x,t)=[2ma’(t)]” Y%ex Shalt) 4820
S(x,t)=S§[X(t),t]+S[X(t),t][x—X(t)] .
U |mX(t) imvoxo
+S[ 2() ][X X(O T 12 X [x—X(t)]? exp[ — [x=X(O)]+—
V(x,t)=V[X(t),t]+V'[X(t),t][x—=X(t)] Xex;{l fdt (1 mxz(t )= V[X(1)]
+ w [x—X(1)]%, (13 72 -
 4mad? (t) (22)

V(X 1) =V X(1),t]+ Vo [ X(1),t][x—X(t)
i al I+Vad I ] Next, we turn to finding the propagat&r(x,x,,t) as de-

Vad X(1),t] fined by the integral equation
= XA (14
Next, substituting Eq(11) into Eqg. (2) and integrating, "b(x’t):f,x dXK (X, X0, 1) #(X0,0). (23
we find
A Let us first define the normalized quantity
v(x,t)= a [x—=X(t)]+ X(t). (15

D (v, x,t)=(2mad) Y y(vg,x,1), (24)

A connection to Eq(12) can be established with the help

of Eq. (7) by collecting terms in[x—X(1)]° and [x which satisfies the completeness relati@h

—X(t)]: o
f dvo®* (vg,X,t)P(vg,x',t)=(27AIM)S(X—X").
X —
S'[X(t),t]= m7 (16) (25
ma From Eq.(2), it follows that
S'[X(1),t]=~—. a7
ha WY AP o) 28
Now, substituting Eq9.11)—(17) into Eq.(8) and collect- at 2 ’
H H _ 0 _ _ 2
Ik:i?veterms nix=XOF, x=X(0)], and [x=XOTF, we which after integration yields
S=7 | 5 m¥e- VX g 18 o axry=o @)
h T ama?) at J ’
. 1 whence
X=—EV’[X(t),t], (19
1 52 fﬁm dx’ ®* (v, X', t)(x',t)
+ EV”[X t]la = s (20 .
= dxe®* (vg,Xq,0 ,0). 28
where we have denotef(t) = S X(t),t]. It is worth notic- J',w %P7 (v0,%0,0)¢%0.0) 8

ing the presence of the quantum potentgl, in the last
terms of Eqs(18) and(20). These equations have the initial ~ Multiplying Eq. (28) by ®(vq,x,t), integrating with re-
conditions spect tovy, and using Eq(25), we have
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¢(X,t)=(m/2'n'h)f+xdvo

X CI)(Uo,X,t) J’j:dXO(D* (UO ,Xo,o) ¢(X0,0),

(29

whence the propagator reads

K(X,XO ,t) = (m/27rﬁ) J_+mdvoq)(vo,x,t)®* (UO ,Xo,o).
(30)

With the help of Eqs(21), (22), and(24), we have ex-
plicitly

a(t)|

K(X,Xg,t)= (mlzwﬁ)f dvo| —

A

X[x—X(t)]?+
ex;{i jdt’(l mX2(t)

hZ
4ma2(t’)) ’

whereX(t) anda(t) are the solutions to Eq$19) and(20),
subject to the initial condition$21). From Egs.(12) and
(31), the zeroth-order quantum actiodivided by7)

ima(t) 1
2ha(t) 4a?(t)

mX(t)
%

X[x=X(1)]

—V[X(t"]— (31

1 1 )
Sol X(1),t] =+ fdt 5 mX() —VIX(1)]

—tiX(t’)]> (32)
shows the presence of the quantum potengal
2
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dv Jv
—+v —+

ot (39

Vo= —

J
o & (V+un),

wherev is the friction coefficient and the third term on the
left-hand side of Eq(34) accounts for the Ohmic friction
mechanism. With the help of E¢7), we can readily obtain

aS h\[oS\?2 1 B
E + S+ 2m —| + g (V+un) =0. (35)
Equations(7) and(35) yield
d’  dx =y 36
G g (Ve (39

By following the same procedure developed to obtain
Egs.(18)—(20), we arrive at

Sot vSp=

1., h?
mX —=V[X(t),t]— ama) (37

. . 1
X+ vX=— —V'[X(0),1], (39)

2

a+va+ = a3 (39

1 VH
VX, fa

subject to the same initial conditions as in E21).
Likewise, the wave packet described by Ei)) can be
written as

ima(t)
2ha(t)

xexr{lmx(t) [x—=X(t)]+ Mvo O}

h
i e
X ex %e fodt

1, h? )
EmX(t )—V[X(t)]—m .

l//(X,t)I[ZWaz(t)]meXF{ [X—X(t)]z}

4a’(t)

Xevt/

(40)

Because our dissipative model keeps the conservation of
probability Eq.(2), Egs.(24)—(30) hold true. Consequently,

Moreover, Egs.(30) and (31) show that the relevant we write the dissipative propagator as

guantum-mechanical information for the propagator is con-
tained in the guiding wave function. The quantum propagator
can be viewed as an expansion of the guiding wave function
over thev, space9].

Next, we turn to the description of €Ohmig friction

mechanism via the causal interpretation of quantum mechan- X ex;{

ics. This description is motivated by classical phenomeno-
logical models that have successfully resolved problems of,
for example, a particle in a gas, without having to account
for the Avogadro’s number of degrees of freedom of the
environment, although in a different context we have the
example of the Navier-Stokes model for the description of a
viscous fluid[10].
To this end, we generalize E(B) to [11]

o0 -1/2
K(x,xo,t)=(m/27rh)J’+ dv, at
o 0
ima(t) 1
2fha(t) 4ai(t) Za2 | X X017
X vt’ 1 XZ " —V[X h )
© Em ) (X1~ 4ma’(t’)
(41)
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whereX(t) anda(t) are the solutions to Eq$38) and(39),  where
subject to the initial condition&22). L
The classical part of the zeroth-order quantum actitin U=p[:mv°+V+Vq] (45)

vided by#) in the propagator above, and

%mxz(t,)_V[X(t,)]), hz (92\/;_(9\/; (9\/;

1 t ,
SS'[X(t),t]=—e‘”‘f dt’ et _
h 0 Q=vU+ o Ve axot gt ox

(46)

42
42 are the energy density and energy density flux, respectively.
can be contrasted to that introduced by Caldirola and Kanai The preceding equations demonstrate that the energy-
[12,13, dissipation theorem is correctly satisfied and validate the
1 1 model developed in this work towards a further understand-
_ rant! 2[4 / ing of the role of dissipation in quantum mechanics. Tem-
Sek=7 fodt € (E mXA() —VIX(t )])' (43 pgrature can enter in thpe formalis?‘n through a stochastic force
added to the right side of Eq34). Via the fluctuation-
As pointed out elsewherfl4], this action does not de- dissipation theorem, a solution to E(8) can be obtained
scribe dissipation correctly, but rather a system with a timeand incorporated to the wave propagait).
varying mass, since the dissipative exponential factor can be Above all, this work shows that the relevant quantum-

transformed away15]. mechanical information for the propagator is contained in the
Finally, from Eqgs.(2) and(34), we can construct the re- guiding wave function. The quantum propagator can be
lation [11]. viewed as an expansion of the guiding wave function over

the vy space. Therefore, it poses an alternative route that
suggests further investigations. Applications of this work are
in progress and will be published in a forthcoming paper.
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