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Antônio B. Nassar
Extension Program–Department of Sciences, University of California, Los Angeles, 10995 Le Conte Avenue,

Los Angeles, California 90024
and Departamento de Fı´sica, Universidade Federal do Para´, 66075-900 Bele´m, Pará, Brazil
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In the causal interpretation of quantum mechanics,
primary concept is introduced that a particle has a defi
path which is determined by a suitable equation of mot
and that this path is fundamentally affected by a guid
wave function@1–5#. Accordingly, the connection betwee
the particle and wave properties can be obtained by wri
the guiding wave function in the polar form

c5f exp~ iS!, ~1!
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Equation ~2! represents the conservation of probabil
with densityr, whereas Eq.~3! describes paths of a particl
with velocity
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subject to an arbitrary external potentialV and the so-called
quantum potentialVqu @1–5#.

With the help of Eq.~7!, we can readily obtain
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From Eqs.~7! and ~8!, we can also obtain

d2x

dt2
52

1

m

]

]x
~V1Vqu!, ~9!

where

d

dt
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~10!

is the hydrodynamical derivative.
Equation ~9! has the form of Newton’s second law, i

which the particle is subject to a quantum potentialVqu in
addition to the classical potentialV. The classical set of
paths is obtained by considering the case when the ampli
of the wave function is a slowly varying function of position
i.e.,Vqu→0.

In what follows, we develop a protocol to obtain a prop
gator for a wave function by retaining explicitly some of th
features of the quantum potential. Therefore, this proced
attempts to generalize that developed by Feynman and H
1230 © 1997 The American Physical Society
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@6#, since the procedure of Feynman and Hibbs is viewed
a method for obtaining the quantum wave function from
set of classical paths, for whichVqu50.

We investigate the quantum hydrodynamical evolution
the wave packet

f~x,t !5@2pa2~ t !#21/4expH 2F @x2X~ t !#2

4a2~ t ! G J , ~11!

whereX(t) represents the classical path. To this end,
expandS(x,t), V(x,t), andVqu(x,t) aroundX(t) up to sec-
ond order:

S~x,t !5S@X~ t !,t#1S8@X~ t !,t#@x2X~ t !#

1
S9@X~ t !,t#

2
@x2X~ t !#2, ~12!

V~x,t !5V@X~ t !,t#1V8@X~ t !,t#@x2X~ t !#

1
V9@X~ t !,t#

2
@x2X~ t !#2, ~13!

Vqu~x,t !5Vqu@X~ t !,t#1Vqu8 @X~ t !,t#@x2X~ t !#

1
Vqu9 @X~ t !,t#

2
@x2X~ t !#2. ~14!

Next, substituting Eq.~11! into Eq. ~2! and integrating,
we find

v~x,t !5
ȧ

a
@x2X~ t !#1Ẋ~ t !. ~15!

A connection to Eq.~12! can be established with the he
of Eq. ~7! by collecting terms in @x2X(t)#0 and @x
2X(t)#:

S8@X~ t !,t#5
mẊ

\
, ~16!

S9@X~ t !,t#5
mȧ

\a
. ~17!

Now, substituting Eqs.~11!–~17! into Eq.~8! and collect-
ing terms in @x2X(t)#0, @x2X(t)#, and @x2X(t)#2, we
have

Ṡ05
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\ S 12 mẊ22V@X~ t !,t#2
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4ma2D , ~18!

Ẍ52
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m
V8@X~ t !,t#, ~19!

ä1S 1m V9@X~ t !,t# Da5
\2

4m2a3
, ~20!

where we have denotedS0(t)5S@X(t),t#. It is worth notic-
ing the presence of the quantum potentialVqu in the last
terms of Eqs.~18! and~20!. These equations have the initi
conditions
s
e

f

e

X~0!5x0 , Ẋ~0!5v0 ,

a~0!5a0 , ȧ~0!50,

S0~0!5
mv0x0

\
. ~21!

Now the wave packet described by Eq.~1! can be written
as

c~x,t !5@2pa2~ t !#21/4expF S imȧ~ t !

2\a~ t !
2

1
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\
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\

G
3expF i\ E

0

t
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2
\2

4ma2~ t ! D G . ~22!

Next, we turn to finding the propagatorK(x,x0 ,t) as de-
fined by the integral equation

c~x,t !5E
2`

1`

dx0K~x,x0 ,t !c~x0,0!. ~23!

Let us first define the normalized quantity

F~v0 ,x,t !5~2pa0
2!1/4c~v0 ,x,t !, ~24!

which satisfies the completeness relation@7#

E
2`

1`

dv0F* ~v0 ,x,t !F~v0 ,x8,t !5~2p\/m!d~x2x8!.

~25!

From Eq.~2!, it follows that

]~F*c!
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50, ~26!

which after integration yields

]

]t E2`
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dx F*c50, ~27!

whence

E
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dx8 F* ~v0 ,x8,t !c~x8,t !

5E
2`

1`

dx0F* ~v0 ,x0,0!c~x0,0!. ~28!

Multiplying Eq. ~28! by F(v0 ,x,t), integrating with re-
spect tov0 , and using Eq.~25!, we have
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c~x,t !5~m/2p\!E
2`

1`

dv0

3F~v0 ,x,t !E
2`

1`

dx0F* ~v0 ,x0,0!c~x0,0!,

~29!

whence the propagator reads

K~x,x0 ,t !5~m/2p\!E
2`

1`

dv0F~v0 ,x,t !F* ~v0 ,x0,0!.

~30!

With the help of Eqs.~21!, ~22!, and ~24!, we have ex-
plicitly

K~x,x0 ,t !5~m/2p\!E
2`

1`

dv0S a~ t !

a0
D 21/2

3expF S imȧ~ t !

2\a~ t !
2

1

4a2~ t ! D
3@x2X~ t !#21

imẊ~ t !

\

3@x2X~ t !#GexpF i\ E
0

t

dt8S 12 mẊ2~ t8!

2V@X~ t8!#2
\2

4ma2~ t8! D G , ~31!

whereX(t) anda(t) are the solutions to Eqs.~19! and~20!,
subject to the initial conditions~21!. From Eqs.~12! and
~31!, the zeroth-order quantum action~divided by\!

S0@X~ t !,t#5
1

\ E
0

t

dt8S 12 mẊ2~ t8!2V@X~ t8!#

2Vqu@X~ t8!# D ~32!

shows the presence of the quantum potential@8#

Vqu@X~ t !#5
\2

4ma2~ t !
. ~33!

Moreover, Eqs.~30! and ~31! show that the relevan
quantum-mechanical information for the propagator is c
tained in the guiding wave function. The quantum propaga
can be viewed as an expansion of the guiding wave func
over thev0 space@9#.

Next, we turn to the description of a~Ohmic! friction
mechanism via the causal interpretation of quantum mech
ics. This description is motivated by classical phenome
logical models that have successfully resolved problems
for example, a particle in a gas, without having to acco
for the Avogadro’s number of degrees of freedom of t
environment, although in a different context we have
example of the Navier-Stokes model for the description o
viscous fluid@10#.

To this end, we generalize Eq.~3! to @11#
-
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wheren is the friction coefficient and the third term on th
left-hand side of Eq.~34! accounts for the Ohmic friction
mechanism. With the help of Eq.~7!, we can readily obtain
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Equations~7! and ~35! yield
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dt2
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52
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]
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~V1Vqu!. ~36!

By following the same procedure developed to obta
Eqs.~18!–~20!, we arrive at
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Ẍ1nẊ52
1

m
V8@X~ t !,t#, ~38!
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, ~39!

subject to the same initial conditions as in Eq.~21!.
Likewise, the wave packet described by Eq.~1! can be

written as

c~x,t !5@2pa2~ t !#21/4expF S imȧ~ t !
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2

1
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Because our dissipative model keeps the conservatio
probability Eq.~2!, Eqs.~24!–~30! hold true. Consequently
we write the dissipative propagator as
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1
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\
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4ma2~ t8! D G ,
~41!
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whereX(t) anda(t) are the solutions to Eqs.~38! and~39!,
subject to the initial conditions~22!.

The classical part of the zeroth-order quantum action~di-
vided by\! in the propagator above,

S0
cl@X~ t !,t#5

1

\
e2ntE

0

t

dt8 ent8S 12 mẊ2~ t8!2V@X~ t8!# D ,
~42!

can be contrasted to that introduced by Caldirola and Ka
@12,13#,

SCK5
1

\ E
0

t

dt8 ent8S 12 mẊ2~ t8!2V@X~ t8!# D . ~43!

As pointed out elsewhere@14#, this action does not de
scribe dissipation correctly, but rather a system with a tim
varying mass, since the dissipative exponential factor can
transformed away@15#.

Finally, from Eqs.~2! and ~34!, we can construct the re
lation @11#.

]U

]t
1

]Q

]x
52nrv2, ~44!
us
c

ai

-
be

where

U5r@ 1
2mv

21V1Vqu# ~45!

and

Q5vU1
\2

2m2 FAr
]2Ar

]x]t
2

]Ar

]t

]Ar

]x G ~46!

are the energy density and energy density flux, respectiv
The preceding equations demonstrate that the ene

dissipation theorem is correctly satisfied and validate
model developed in this work towards a further understa
ing of the role of dissipation in quantum mechanics. Te
perature can enter in the formalism through a stochastic fo
added to the right side of Eq.~34!. Via the fluctuation-
dissipation theorem, a solution to Eq.~38! can be obtained
and incorporated to the wave propagator~41!.

Above all, this work shows that the relevant quantu
mechanical information for the propagator is contained in
guiding wave function. The quantum propagator can
viewed as an expansion of the guiding wave function o
the v0 space. Therefore, it poses an alternative route
suggests further investigations. Applications of this work a
in progress and will be published in a forthcoming paper
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